
On the theorY of single ampling inspection by a 

baaed on 

By 

A. Ba ld. 

DOC 

ul of ~ t ,llr! st~ · •t r 'rf\" ,.,. " ' r l\f' (' r · ~('fl 

Terhnlral Rlp·H' .. • t • , , ., h 
pre 1 d WI 1 L,.,t••c' • unr, tJ • .....,.o)l),.., ( ... < u .~ · ·- "' 

INS'IlTU'IE OF MAl'H!MATlCAL S1:AI.ISTlCS 

UN !\'US ITY OF COPENHAGEN 

1$5 

... 
q • 



Best 
Available 

Copy 



On the theory of single sampling Inspection by attributes 

based on two quality levels. 

By 

A.  Hald. 

INSTITUTE OF MATHEMATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

September 1965. 



Contents. 

Page 

1. Introduction and summary. 1-4 

2. The model. A - 8 

3. An asymptotic expansion for the binomial distribution. 9-11 

A. The ratio of the consumer's to the producer's risk. 11 - 13 

5. A minimization theorem. 13 - 1A 

6. Bayeslan single sampling plans. 1A - 18 

7. Restricted Bayeslan sampling plans. 18 - 19 

8. Minimum average costs foi fixed consumer's or:  producer's risk. 19 - 22 

9. Minimum average costs for P(P0) ■ 1/2. 22 - 23 

10. Minimum average costs for decreasing consumer's or producer's 
risk. 23 - 25 

11. Minimum average costs for a fixed ratio of the consumer's to the 
producer's risk. 25 - 26 

12. Sampling plans defined by two risks. 20 - 29 

13. Efficiency and robustness. 29-31 

1A. An example. 32 - 33 

15. Miscellaneous remarks. 34 

References. 35 - 36 

Prepared with the partial support of the Office of Naval Research (Nonr-N62558-3073) 

Reproduction in whole or in part is permlcced for any purpose of the United States 

Government. 



I - 

Among thm  b««lc concepts In tht thoory of tanpllng Intpoctlon the producer's 

and the consuner's risks ere the most widely used for characterIilnc syscea 

of sampling plans. It seems therefore strange that a comprehensive theory based 

on these concspts does not exist. The purpose of the present paper is to present 

such e theory for the cese of single sampling by attributes. The theory naturally 

covers some «ell-known results, but old es well as new results are derived 

by a coomon method and compared within the same model. The requirements defining 

a system of sampling plans are usually of such a nature that no explicit solution 

exists for the sample sixe and the acceptance number. We shall therefore supple- 

ment the exact (implicit) solutions by asymptotic solutions which give a better 

insight into the basic properties of the systems. 

Let there be given two quality levels, p. and p., p. < p,* For a sampling plan, 

(n,c), n denoting the sample eise and c the acceptance number, the operating 

characteristic is defined as P(p) • B(c,n,p), where B(c,n,p) denotes the 

cumulative binomial distribution. The producer's risk is then Q(p.) ■ 1-P(p.), 

and the consumer's risk is P(P2) . These risks give the probabilities of wrong 

decisions under the assumption that p. represents acceptable and p2 rejectable 

quality. 

He shall furthermore assume that the consequences of wrong decisions are 

commensurable and measurable and that the average "loss" from using a given 

sampling plan may be expressed es a linear combination of the two risks, 

7iQ(P|) + Tn^CP?) 0Ay* From a Bayesian point of view y.  equals the product 

of the prior probability of p. and the corresponding decision loss. 

If the costs of sampling inspection are proportional to the sample size and 

we sample a lot of size N we may therefore write the average costs in the 

standard form 

ll<H,n,c) - n ♦ (H-nHyjQCpj) + r2P(P2)) 

where 7. 1 0 end 7. I 0. We shall use this cost function in the comparison of 

the various systems of sampling plans. 

In section 2 it is shown how I may be interpreted as the sverage costs when (1) 

samples are drawn without replacement (2) from lots produced under binooial 

control but with a process average varying at random from p. to p-, i.e. the 

prior distribution of lot quality is a double binomial, and (3) costs are 

linear in the number of defectives, the sample else and the lot slse. Apart 
ma 

from a term of order e" the function R may thus be interpreted as the usual 

*r. 



"rltk" in decision theory. The model covers rectifying as well as non- 

rectifylog inspection. 

In sections 3 and 4 asymptoti.e expansions are derived for the producer's and 

the coneuner's risk and for their ratio. 

Section 5 gives a miniaizacion theorem from which the relation between lot 

else and sample sice may be found. 

In the remaining part of the paper we discuss ten systems of sampling plans 

defined as follows: 

(1).    Bavesian plans, i.e. plans minimizing R. 

Restricted Bayeslan plans, i.e. plans minimizing R under some suitably chosen 

restriction on the operating characteristic, viz. 

(2).    Min R for (Kpj) - o or ?{p?)  - ß. 

(3).    Min R for P(p0) - 1/2 where p0- (^og^)/(^log^^j. 

(4).     Min R for QCp^ • a/N or P(p2) - ß/N. 

(5). Min R for P(P2)/Q(P1) - p. 

Plans defined by two risks, viz. 

(6). QCPj) - a/N and P(p2) - ß/N. 

(7). (Kpj)  " a and P(p2)  » ß/N (or P(p2)  - ß and Q^)  - a/N). 

(8). P(p0)  - 1/2 and QCpj)  - a/U (or P(p2)  - ß/N). 

(9). Q(p1)  » a and P(p2)  -  ß. 

Finally we consider percencane InspecLion defined as 

(10) .     n a piN and c - p n. 

In all these definitions a,ß,p,  and y represent suitably chosen positive 

constants which may be different from case co  case. 

For each system of sampling plans it is shown how the exact solution nay be 

obtained and, since this solution is an implicit: one, an explicit solucion 

is given as an asymptotic expansion for N -> ». 

The advantages of the asymptotic solution are ;;hat (1) ic clearly shows how 

the sampling plan, the two risks, and the costs depend on the parameters, (2) 

it gives good approximations to the exact solution even for quite snail 

values of c (normally sufficiently accurate for c 2 2), (3) it may be used 

for developing interpolation and extrapolation formulas in connection with 
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"master cables" of the exact solution, and (A) It shows the sensitivity of the 

solution with respect to changes of the parmacters. We shall here mainly 

discuss the first of these points. With reopect to the other three and a de- 

tailed discussion of tables the reader is referred to [9], (ill, and [12]. 

The systems defined by (1) • (8) fall Into two classes depending on whether 

both risks arc OOjj ) or one of the risks Is constant and the other is pfN ). 

The flrsc class contains systems (1), (3), (A), (5), (6), and (8). It is proved 

thai, asymptotically the relation between acceptance number and sample size 
-1    -2 1 -1   -2 

has the form c - p n iV ayh a.n  + 0(n ), that In N « (p.n + -In n + Kj+ K-n +0(n ), 

which by inversion detexmines n as a function of N, and that R ■ n + 6.f ft n +0(n ), 

the constants p and <p    being the same in all canes (depending on (p., pO only), 

whereas the remaining constants are found as functions of the parameters in the 

model and the restriction. This means that n - 0(ln N) nud that the average 

decision loss, (N-n)(y.QCp.) + 72P(p?)), tends to a constant (because Q(p1) and 

?(P2) are ^(N"
1)). 

The second class consia-s of systems (2) and (7). Ic is proved chat asymptotical- 

ly the relation between acceptance number and sample size has the form 

1-^/2     -3/2 
c "  p n + Z a.n    + 0(n   )> P« representing the quality level having 

1 l-t/2     -3/2 
a constant risk, that In H ■ (p.n ♦ fin n + Z K.n  ' + 0(n ' ), which 

J   ^     i^i 1 

~ -1/2 
determines n as a function of N, and thac R » &N 4- (l-8)n + 5.+ 0(n   ), 

the constants ip and 5 being the same in .he two cases. Because of the constant 

risk all relations arc considerably more complicated than for the first class 

and R becomes 0(N) insccad of 0(ln N). For large lots it must therefore be 

seriously considered whc.hcr it is reasonable to use a system with a fixed 

consumer's or producer's risk and correspondingly high costs as compared with 

a system having decreasing risks. 

The system with both risks fixed and ehe syscem with percentage inspection both 

.'.ead to R « 0(N) and asymptotically they have the same costs for |i = 7jCt + y.ß. 

The system with fixed risks uses a fixed sample size so that the decision loss 

becomes of order N whereas percentage Inspection has n ■ 0(N) and a decision 

loss of order e 

For systems (2) and (3) we have the Important result that asymptoticalIy n 

depends on (p^Pj) and NX only where X. is a function of 7x,y7,  and the parameter 

in the restriction. It therefore suffices to tabulate n as a function of N for 

X. - I, say, and use this table for X 4 l wich N - NX as argument. 

Writing B(c,np) for ehe cumulative Folsson distribution corresponding to B(c,n,p) 

we have under Poisson conditions exactly and under binomial conditions for small 
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(P^P.)  approximately chat 

Rp1 «= ra + (M-mXr^l-BCc.m)) + 72B(c,na)) 

whore o ■ np., M * Np., and r • P^/Pi* Results analogous to those stated above 

are therefore valid in terms of M,n, and c for given (r,/.,?,); 1"e* wc save 

one parameter. It follows that under binomial conditions we have for systems 

(1)^ (2), (3), and (5) the following "proportionality law": The samplins plan 

corresponding to (N,Xp ,Xp.) is Approximately equal to (n/X,c) where (n,c) is 

the plan corresponding ..o (NX,p.,?«). 

For systems (6) •• (9) we have similarly: The sampling plan corresponding co 

(N,Xp.,Xp2) is approximately equal to (n/X,c) where (n,c) is the plar correspond- 

ing to (N^p^Pj). 

These theorems greatly reduce the tables necessary fur applications of the 

systems. 

It is shown that the restricted Bayesian plans wich both risks decreasing and 

the corresponding plans based on two risks all have an economic efficiency tend- 

ing to 1 for N -> oo as compared to the Bayesian plans. (The efficiency of plans 

having at least one risk fixed tends to zero). This result means that wrong 

values of the weights of the prior distribution and wrong values of the cost 

parameters have a secondary influence on the efficiency which tends to 1 if 

only (p.,p.) are correct. If also 
# # 

wrong values of (p^P?)* (PwP?) 8ay^ are U3e- ^cr finding the plans, then the 
«   » 

efficiency tends to e, 0 < e < I, if and only if p < p < p < p , otherwise 

the efficiency tends to 0. 

The present model leads to a constant ratio of the producer's and the consumer's 

risk for the (Bayesian) sampling plans. This provides a <notivation for the rule 

of thumb suggested by Lehmann [14] for obtaining a reasonable balance between 

the probabilities of errors of the first and second kind in testing the hypothesis 

P ~ Pj against the aiternacive p ■ p9. 

2. The model. 

Let N and n denote lot size and sample size and let X and x denote number of 

defectives in the lo^ and the sample, respe ivcly. The acceptance number is 

denoted by c 

Consider the following linear cost funccion 

nS^ xS + (N"n)A1+ (X-x)A2   for x S c 

h(X,x,N,r.,c) =<j (1) 

I nS^ xS2+ (N-n)R:+ (X-x)R2   for x > c 
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end  let tho (prior) distribution of lot quality be £N(X). The average coato then 

become 

K(N,n,c) -21 h(X,x) p{X,x) 
X x 

where        p{X,x) • f
N<

X)(x)(X-x)/^ ' yn(5t) p{X|x)' 

g« (x) giving the (marginal) probability of getting x defectives in the sample, 
n • n 

i.e. 

«*,„<■" • o^v^x'p/C5- <2) 
' y-o 

This compound hypergeomctric distribution has been discussed in [8] where the 

following results were proved: 

E t<r) (N.n)<») 1      U^i (3) 

'        fr)       (x)   * ^ ' 
^    (n+r)^'    8M <*' 

Writing GN n(c) =  Eg n(x) we find 
'       x-o  ' 

K(N,n,c) -  n51 + E{x)S2 + (N-n) A^ n(c) + ^d-^ n(c))l 

c n 
+ L2  Z gN n(x)E{X-x|x) + R2 Z  g  (x)E{X-x|x). (5) 

'x«=o  ' ' x-c+1 

The last two terms of (5) may be simplified by using (A) for r ■ 1 which gives 

gN)n(x)E(X-x|x) ■  (N.„)^i ENjn+l(x+l)  . 

The average costs are obviously a rather complicated function of n and c and 
in general also of N. It is easy to see, however, that the necessary and sufficient 

condition for K to be a linear function of N for all values of (n,c) and all 

values of the cost parameters is that g.t (x) is independent of N. 
N, n 

From g's independence of N follows that E(x  /n  ) is independent of N so 

that (3) gives 

E{X(r)) - N(r) ar      for N J r, (6) 

say, where a does not depend on N. 



To find the clais of distributions fN(X) satisfying (G) wc introduce the 

limiting cumulative distribution of X/N defined by 

W 
W(p) « Um   Z  fN(X) . (7) 

N—> oo x»0 

Proceeding as in  [oj we find that 

1 
o »    / prdW(p) 

0 

and 

fN(X) -    (JJ)  / PX qN"X dW(p) . (C) 

It follows that g  (x)    f (x), i.e. the prior distribution is "reproducedM Ly 

hypcrgeometric sampling. (A discussion of reproducible distributions has been given 

in [0]). 

We shall therefore get particularly simple results by ljimit^ng_thc_2
r.i2r 

distributions to the class of distribution.«» given by (0), called mixed binomial 

distributions. 

Writing b(x,n,p) » (£)pXqn * and 

c 
P(P)    -  B(c,n,p) - I    b(x,n,p) (9) 

x=o 

we get 

and from (3) 

where 

x+1 
^j b(jcfl,n+l,p) »  p b(x,n,p) 

1 
K(N,n,c) - / K(N,n,c,p)dW(p) (10) 

0 

K(N,n,c,p) - ntf^p) + (N-n) U1+A2p)P(p) + (R^ R2p)Q(p) . (ID 

The assumption of a mixed binomial prior distribution means that each lot is 

produced under binomial control and that the process average varies at random 

from lot to lot according to the cumulative distribution function W(p). 

Correspondingly the average costs (11) represent an average over all lots with 

a given process average, i.e. a conditional average, and (10) gives the over-all 

average. 

Besides giving the exact average costs for a mixed binomial prior distribution 

(10) and (11) may be interpreted as giving an approximation to the average costs 

for large N for any prior distribution satisfying (7). This follows from the 

I       facts that the hypergcomctric distribution tends to the binomial for N —> », 

n —> oo, n/N —> 0 and X - Np, p fixed, and that x  np + 0(Vh), so that (1) 
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beconcf 
r n(Sl + S2p) + (N - nXAj + A2p) 

h "  t n(S1 + S2p) + (N - nKRj + R2p) 

disregarding terns of order  \n.  The limit theorems derived in the following 

on the basis of  (10) and (11) are therefore valid in general. 

The model may easily be generolized from a linear to a polynomial cost function. 

Consider for example the term (X - x)A7 which gives the contribution 

1 
(N - n)A?  / p P(p) dW(p) 

0 

to the average costs. Introducing instead 

m .  * 
I   A2v (X - x)^ 

v»=l 

we find by using (4) the following average costs 

; ^ (N n)(v) i iavig      (]C+V)i 
!1 x-o (n+v) '   ' 

The condition for the average costs  to be a polynomial in N is, as above,  that 

g does not depend on N. For a mixed binomial prior distribution we get 

E A    (N - n)l'; / pVP(p) dW(p). 
v-1 £V 0 

Treating all six terms of (1) analogously we find the generalized average costs 

are given by (10) if we replace (11) by 

K(N,n,c,p)    -    E n(v)(Slv + S2vpV) 

+1   (N-n)(v) (Alv+A2vpV)P(p) + ^lv^2v^)Ci(p)]'(l2) 

v-1 

Another generalization which is easily carried out consists of replacing  (C) by 

fN(X)    -    (J) / PXqN'X dWN(p) (13) 

where the comulative distribution function W (p) depends on N. This will only 
N 

result in a corresponding change of (10). 

In the following we shall, however, mainly discuss the cost function defined 

by (10) and (11). 
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To simplify the no:aclon we introduce Che  three coot functions 

ka(p)   -- A^ A2p,      kr(p) - R^ R2P,      k8(p) - Sf S2p, (1A) 

and ehe corresponding averages k ,k , and k , defined by 

1 
k - /k(p)dW(p). (15) 

0 

If the equation k (p)  «* k (p) has a solution p - p    In the interval  (0,1) we a r r 
define 

pr 1 
Km  I Mp)*dW(p)  + / k (p)dW(p) (16) 

ra  o  a pr 
r 

which represents ehe average costs per iteu when all  lots from processes with 

p ^ p    are accepted and all other Iocs arc rejected.  The fraction defective 

p    is called the (economic)  break-even qualify. 

Defining the standardized form of (10) as 

R(N,n,c)  -  (K(N,n,c)   - Nk )/(k - k ) (17) m        s      m 

we  find 

A  -R      Pr 1 ^ 
R - n+ (N-n)  ^T \ I (Pr-P)Q(P)dW(p)  +    /  (p-Pr)P(p)dW(p) , (18) 

"a    m   • p ' ^ 
0 '* 

Using k - k   as "econouic unit"  the two terns of  (18)   represent  the costs of 

sanpling inspection and the average decision losses,   respectively. 

In  the remainder of  the  paper ic will be assumed  that  the prior distribution 

is a double binomial discribution, or as a  limiting case, a single binomial. 

The double binomial distribution is a weighted average of   rwo binomials with 

parameters p.  and p«,   p.< p_,  and weights w1   and w2,  w.-f w.»  1,  i.e.   the process 

average has a two-point distribution. 

The  standardized average costs may then be written as 

R(N>n,c)  - n + (N-n) (r^Pj) + r2P(P2)) (19) 

where 
7 - w (k (p )-k (p ))/(k - k )  and 7 - w (k (p,)-k (P-))/(k -k ).     (20) 

It will be noted that the average decision loss per item is a linear combination 

of the producers risk, QdO, and the  consumer's risk. P(p-) 

The standardized costs of accepting or rejectins all lots without inspection 

are R • N7- and R » N7., respectively. 
3       fc L        1 



3. An asymptotic cxpansicn for the binomial distribution. 

There exist several asymptotic    expansions for l-BCc^p),  c -  [np0] and p < p0* 

for n -> ao,  see for example Blackwell and Hodges [l] and Brockwell  (2). Wc need, 

however,  an expansion under the as8umpi:ion  chat c/n • p0+ c,  c —> 0 for n —> «, 

and shall use the same method as Brockwell  wo prove 

Theorem  1.    Let 

c/n « p   +    I    a n"i/2 + 0(n"5/2). (21) 
l-l     1 

For p > pn we have 

B(c,n.p) qoF exp \-nW?Q,p) + I bi(p0,p)n'i/24O(n"5/2))] (22) 
|p-prt|/2«npAqn ^ i-l J 

0^0 

where 
P0 % 

<P(P0,P) - Poln7+qolnT' 

m-*— , b_" a,. In—   + i   • 
i    q0P ' 2       2    ^p        2?^ 

P0q     _a^     a^l+laj     a^U^Pg) 
V a3 "v ■  p-p0 

+    2p0q0        "    b%^2    ' 

i   , iJ'"*    &2    a^2Poq   + !2!!L+2aia3 
A      4    %'       p-p0       2(p-pJ2 -0-0 2Pn<». 

0' 

i2pOqo" Mp^)2 +    UCp^)3 

FOI  p < p.  the  siiac    expression is valid  for  1-B(c,n,p). 

Proof. Writing c * nh and using Stirling's  formula we get 

In(^)  -  -j ln(2nnh(l-h))   - n(h  In h + (l-h)ln(l-h))   -  ^nhll-h) + ^(n"3) 

so that 

In b(c^n,p)  -^(ZTmhd-h))   - n(p(h,p)   -  j2^i^L + 0(n"3) (1-h) 
wWcrc 

^(h.p)  - h In- +  (1-h) In— . (23) 

Expanding *(h,p)   In a Taylor series around p    and Inserting the given expression 

for h-p    wc  find 

<P(^P)  • ^ a^n"1 2+ (a2cp1+ ja^n"1* (^3^^ Ä
1
a2V l8!^^'3^ 

+ iVl + (^2+ a^)^* p2a2(P3 + fa a^4)n-2 + 0(n"5/2) 

where cp -  (d (p/jh ).        .  Similarly we have I h-p0 
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0*0 PoVn V    90^ 2^^" 

and 

I2nh(l.h)      Unp^ + ^n        >   • 

Combining these expressions vc get an expansion for In b(c,n,p) with remainder 
• 3/2 

i:enn of order n'       . 

Expressing the binomial by the incomplecc Becafunction we have 

B(c;n;p) ■ (n-c)Ö   /(l^V^^dx. 
0 

Changing the variable ehe  Integral becoucs 
,  n 

/ (y-DV^dy - / [ü^S   ^-7e-n2f(z)d2 
l/q l/qV y   ^  y   z0 

where « ■ -h In(y-i) + In y and l{z)  « y dy/dz  Integrating by parts leads to 

09 *n2 

/ e"nzf(2)dz - ie  0 (f(zn) + ~t'U)  + 0(n"2)). 
' n        0   n   o zo 

As z-  is found from z for y • l/q we have z :: -h In p - (l-h)ln q and 
-nz. 

c   /n ■ p q  /n. From 

f(z) - (y-l)/(y(l-h)-l) 

we get 

t'(z)  - -hy(y.l)/(y(l-h)-l)3 

so that 

^  ha   ^ 
2 0   n    0   p-hV n(p.h)' 

Combining the results obtained we have 

B(c,n,p) = b(c,n,p)ü^fl ka_ + 0(n'2)N . (24) 
v n(p-h) ^ 

Expanding the  logarithm of the factor to b(c,n,p)  around p   we  find 

ln sujua. ln V. + !i '_i_.±N 

l>(c,n,p) p-p0     i,n    VP-P0    Ify 

.   l^ a2    ,  V2"0"        'j.     _!lV0,n-3/2, 
nVp-p0     2(p-pJ2      «k)     2,^     - 



which result together wich the expansion for In b(c,n;p) after some reductions 

lead to the theorem. 

A similar procedure leads to the result for 1-B(c,n,p). 
i 

It is obvious thai: the expansion may be continued by using the same method 

and that the following terms are of the same type as those given in theorem 1. 

A. The ratio of the consumer's to the producers risk. 

From theorem 1 ii follows that both the conouner's risk, P(p2) • B(c,n,p ), and 

chc producer's rick, Q(p,) » 1-B(c,n,p.), tend exponentially to zero for n —> «» 

and p^ p0< p2 sin-c (p(p0;P.) > 0 and (p(p0/P2) > 0. 

To discuss the ratio wc introduce 

P-q,     q, 
6(P) " <?i?,?*)-'Hp,P~)  - p In ^ - In -^ , (25) 1      2        p1q2     q2 

6 » 6(pn) and t*  = ln(p q./p.q9). li.  follows from theorem 1 that 

P(P2)      P2<Po"
pl) 1 /      al(p2"Pl)  ^ 

QU\) I^-PQ*    
0  ^   2 /n^3   (P2

_
PO

)<P
O'
P
1
)
 ' 

+ i   ^ M+      
a2(P2-pl) +    ar2pOq2        V2P0V ^^  -3/2.   r26. + —   i a.ö'+ •-     +  r - +0(n        ) .(26) 

n    VA        (PJ-POXPO-P^ 2(p2.Po)2      2(Pc.Pi)2/    - 

n8 
For 6 | 0 we  find  that P(p2)/Q(p1)  ■ 0(e      ),  so that one of  the risks tends 

exponentially fastei*  to zero than  the other. 

For 6 ■ 0 and a,  ^ 0 we have  that  P(p2)/Q(p1^   tends  to a constant. 

By means of  the above expression we shall  prove 

/     «»A;/     P2qA 
Theorem 2.  Let c » np^ a,, and p -    In —   ,    In .  Then 
  0    2       ^o  V    q2/ / \    P1q2// 

p^) m ^(pp-p,) /w2
1 + ^ ((^^\J2L .-vLn.ou-3^).(27) 

Q(P1)       P^PZ-PQ) VPlV ^        c-a2^2^p2-pO P0"P1'   (P2-P0)2     (PQ-PX) J 

For small p and p anl a«» -2/3 we have approximately P(P0) " 1/2 and P(p2) ■ ^(Pj) • 

Pvoof. The first part of nhc theorem follows from (26) for 50« a^ a^" a^« 0. 

The second pare is found by letting p -> 0 for fixed r ■ P^P,- Noting chat 

p /p -> (r-l)/ln r and introducing 

■» 

ßl a  r-l'-ln r and H'  r In'r-r+l 
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we find 

P(P2) 

Q(p[) 
a2+l    82 

8i I 
1 

which for r < 20 is approximately equal  to 

^+^(gl+82)(a2+f)}. P(P2) 

Q(pJT 

a2+2/3 

3/2 
c  a     (81+g2)(a2+ gj,"  82) j + 0(n ) 

(2C) 

1/ 3 
The last result rests on the  (numerical) fact  that r        g9/8i    *  1 antl 81  - 80 a, ^/^ 

for r < 20 as will be seen from the following table. 

1/3 Table of g^  g., and r        g2/g1 

r 8l g2 
8r82 8l+82 

1/3       . 
r        g2/gl 

1 00 CO 0.67 00 1.00 

2 3.23 2.59 0.67 5.C5 1.00 

3 2.22 1.54 0.6C 3.76 1.00 

5 1.67 0.99 0.68 2. 6i 1.01 

7 1.40 0.79 0.J9 2.27 1.02 

10 1.34 0.64 0.70 1.90 1.03 

15 1.24 C.53 0.71 1.77 1.05 

20 l.U o.4u 0.73 1.65 l.Oo 

Since  the equation B(c,n,p  ) =   1/2  h'as   the  solution c 

see section 9,   the  last  part 01   the  theorem is  proved. 

npc - (2 - p0)/3 + OCn"
1), 

Theorem 2 implies that a sysi-em of sampling plans defined (partially) by the relation 

c = np + a will have a ratio Pd-J/QCPi) tending decreasingly or increasingly to 

a constant according as a2 is larger or smaller than-2/3 respectively. If p difiors 

from the value defined in theoren 2 then PXp«)/Q(p.) will tend exponentially to 

zero or infinity.. 

From (26) we also find 

Theorem 3.  Let c/n • p + I a.n"1  + 0(n"   ). Then P(p9)/Q(p1) is constant 
-   •   - U  i-1  l       ^ l i 

(to the order of approximation here considered), i.e. 

P(P2) 

Q(p[)" 

if and only if p  - (In —)/ln 

—7 T \      1 + ^(n   ) 
P1(P2-P0) VP^Z/  V  -v 

qi     //p2qr 

(29) 

-——  .  a, ■* a_ - 0, ami 
^plq2/ '13' 
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1/ 02      4    a2        ^      pOr>l ^32     N 
6,VVPl      P2-P0        (p^p,)2     '   (P2-P0)2^ 

(30) 

c 

For snail p. and p. we have approximately 

c  a np0 + a^ - (3^ g2)(a2+ 2/3)/(np0ln r) 

a2+ 2/3 
and P(p2)/Q(p ) a r       where r ■ P2/P1. 

Prcof. The main result follows directly from (2o) and Che approximation is fourd 

by similar considerations as under theorem 2. 

5. A minimization theorem. 

For use in later sections we need 

Theorem 4«_ The minimum of 

-1/2 
R(n) • n + (N - n)Xn   f(n) 

4   -1/2 where f(n) ■ exp{-n Ian   ),   X > 0 and a > 0, with respect to n for N 
1-0 l 

is equal to 2 

1 /     al    al " 2V     -3/2 •nlnP-n^ri- ^ +-V^  + 0(n 3/2), 
0 ^      0 v     ^ann 

n being determined as a function of N from the equation 

1 -1/° -3/2 
In(N-n) = -  In \+ ^ In n + n E a      n    '    + 0(n    '   ) 

i-0 

where a^ -  a^    a^ - V     a2o -   ^  -  In V     rr30 - «3  -  c^/la^  and 

a40 = a4  "   l/?a0 + al/Ö J0 ' 

Proof.    From 

(31) 

-> 00 

(32) 

(33) 

R'(n) » I  -  xn"1/2f(n) + (N - n)(\n"1/2f'(n)  - |\n"3/2f(n))  - 0 

we get 

(N - n)xn'1/2f(n)    = 
{'(n) ^ 1    V1 f.       ,   -1/2,,  A 
-ffrf*^,   i,1 - ^   f(nv 

It  follows  that n —> 00 for N —> 00. 

Since 

f(n)      2n 0      2 vn        2n      - 

1 

; 



and 1 - Xn"l/2f<n) - 1 + 0(e'n) we find 

(N - n)xn-l/2f(- - ^ ■ ^L • -L ■ ---3/^V1 

0 v     0 v ^Cfon ' 

which iranediately gives min R. Inking logarithras on both sides of the last equation 

we obtain the equation for determining n. 

Inversion of this equation gives 

a0n - x - ßjX172- |ln x + ß2+ |ß1x'
l/2ln x + ß3x'

1/2+ ^x^ln x + ß^x'K o(x'1),   (35) 

-1/2       12     3 where x = In N, ß. ■ a.c    ,    ß« = ^ß.- a^  + jln ; + InX , 

ß3 "  ßl " Cßl + 2ßla2 ■ CC2a:  '  Aßl ln a0 ' 2ßl ln X ' 
1  3Q2  1 3,      1,  , 

ß4 = 2 ■ Cßl + 2a2 ■ V4 " Zln  a0 ■ 2ln k' 

which determines the value of n in min R. 

The importance of theorem 4 is due to the.fact that the asymptotic form of 

R(N,n,c) after ellaination of c =- np + T.  an l  is equal to (31). The result 
O ^ i i 

(32) then tells that the minimum standardized costs asymptotically consist of 

sampling inspection costs plus a term tending to a constant which represents the 

limiting average decision losses for the remainder of the lot. 

An important corollary is found by noting from (33) that asymptotically n depends 

only on ln(NX), i.e. on the product of the IOL size and ehe parameter X. If sample 

size has been tabulated as function of lot size for one value of X^  X » 1 say, 

we may therefore use the same table to find the sample size corresponding to lot 

size N ami any X by using N* •■ NX as argument. 

J. Baycsian single sampling plans. 

The Baycsian solution consists of determining the value of (n,c) minimizing 

R(N/n,c) and using this sampling plan if min R is less than the costs of 

accepting or rejecting all lots without inspection. A necessary condition for a 

sampling plan to exist is that 7 > 0 and 7- > 0, i.e. p, < p < p?. 

Values of (n,c) minimizing R musL satisfy the two inequalities 
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£ R(N,n,c-l) $ 0 < A R(N;n,c), 0 S c S n, 

and 

A R(N,n-l,c) S 0 < A R(N,n,c), c S n S N, 

A denoting the usual forward difference operator. Noting that A B(c,n,p) » 

b(c + l,n,p) and ^ B(c,n,p) - -pb(c,n,p) we find from (19) 

AcR(N,n,c)   -  (N-n)(-71b(c+l,n,p1)+ 72^+1,n,p2)) 

and 
AnR(N,n,c)   *  1 -(/1Q(P1)+r2P(P2)) + (N-n-l)(7lp1b(c,n,p1)-72p2b(c,n,p2)) 

Solving the inequalities with respect to n and N we find that a Bayesian sampling 

plan must satisfy the two inequalities 

and 

a + ßc * n < c. + ß(c-fl) (35) 

F(n-l,c) r? N < F(n,c) (3;) 

where 7„     q 
a - (ln~~)/an-~), (3G) 

71    q2 
p2ql      ql 

ß »  (In ——) / (In -i) , (39) 
q2pl      q2 

1'7l+rlB(c,n'pP" ''2B(c,n,p2) 
F(n,c) ■ n + 1 + i-rr r~, . .   ■*-•> . -r1P1b(c,n,p1)+ r2p2b(c/n,p2) 

For two plans (n.,c.) and (n.^c«), c. < c« say, satisfying (36) and having over- 

lapping N-intervals according to (37) the cost functions must be compared. Solving 

the equation R(N,n.,c.)  - R(N,n2,c2) for N we get 

(n2-n1)(I-r1)+ n27(n2,c2)- ^/(n^c^ 

12 7(n2,c2) - 7(nl,cl) 

where 

7(n,c) - 71B(c,n,pi) - 72B(c,n,p2). 

Since R for given (n,c) is an increasing linear function of N we have that 

R(N,n.,c.) > R(N,n2,c2) according as U^,  N.2, 

It will be noted that the simplicity of the solution depends essentially on 

R(N,n,c) being a linear function of N for given (n,c). 

The above solution has previously been given in [o] and a rather complete tabulation 

of Bayesian sampling plans has been provided in 1*111 • 



- 16 - 

The exact solution given above does not disclose the structure of the relation- 

ships between N,n, and c. We shall therefore derive an asymptotic solution. 

Setting c/n ■ P0 + ci « ~> 0 for n —> «, we shall first find p and e and 

afterwards determine the relation between N and n by means of theorem 4. 

Using (24) and the expansion of b(c,n,p) we get for P0 < P 

q0P .i 
B(c,n,p) -   .     exp {-n(p(p0+e,p) + 0(c) + 0(n )) 

IP-Pol, 2rtnp0q0 

and the same expression for 1 - B(c;n,p) for p > p. For Pi < P0 ^^ Po we therefore 

have the following asymptotic expansion for the cost function 

2 
R - n +(N-n)n"1'2 Z X.  exp{-n(p(p0,p1)-ne(pj + 0(e) + O^"1))      (40) 

where 

Xi    '    Vi7i '   |Po-pi'v'2tP0q0 (41) 
and 

«Pj      - ^(PQ^PJ)    "    ^(Po^i^oPi^ (42) 

By means of this expression and theorem 4 we shall prove 

Theorem 5, For the Bayesian single sampling plans we have 

.2 
c ■ np + a. + a^/n + 0(n ) (43) 

where 
ql       P2ql 

Pn - (In -i) / (In -ff) , (44) 
q2       plq2 

1  , ^'i      H     1 ^ '2  .  a2  .   P0ql    POq2   N     .... a2' vln \ f-y) and a4B 'w \ T^r * rr"  2 1   •   (45) 
1
 2{  V -P0 Vl       [J2  P0      (PQ-P^ (P2-P0)    " 

Further 

min R - n + —(1  - r^—) -♦■ 0(n"2), (43) 
90 2fp0n        - 

In(N-n) - <P n+^In n+a„<;; - ln((p \.b'/l-<(>')) +(3,^+3-1/2^)^ -K)(n"2)        (4;) o      c /.   I o l i '.ill On- 

Q(pl > ■ ~Th <1  ■ TT; + 0(n"2)) -i- (40) 
Vl 0 

and (pj 1-2 1 
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P0 .      <0 
^O    ' p0 ln r + q0 ln q" '    i - 1 or 2 , (50) 

and 2.      . 

01 ■ ^ + ^-v^ + ^V' (51> 

Proof. For Pi < P0 < Pn  lt follows fron, ^0) that R/N —> 0  for N —> m>  n —> 00» 
and n/N —^> 0. For p» < p. we have that QCp.) —> 1 and PCPo) —> 0 so that 

R/N —^> y.  > 0. For p  - p we may use the normal approximation which gives that 

QCp.) —>u ,  0 < a < I,  so that R/N —> y.  >  0. The optimum value of p satisfies 

consequently the inequality p < Pr < Pj« 

It is easy to see (indirectly) thnt the optimum value ol p must satisfy the 

equation ^(p^^p.) = ^(P^^P^) which leads to (4A) because any other choice of p 

will make one of the exponential terms in (40) larger than cxp(-n(p ), 

To find a first approximation to : we put dR/'dc = ö which gives 

2      -neepj 
" X,, cp' e   1    ■     0. 

i=l  l x 

Solving for a   ne we get the first part of (43), i.e. c - np 4- a« + o(l) 

could be expected from (3o) since p  *  1/ß. 

as 

To gei. one more term we write c/n =   p    +  (a 4c )/n,    c —> 0,  and repeat  the 

procedure  ..o find  the new c.  Using  the same method as  in section 3 we may develop 

(40)   into 
2 

-1/2 -2 
R    -    n+(Nn)n EX..   exp{ ■ nq   -a.tpMnr ;pJ+H )/n -{• 0(c/n)+0(n    )} 

,,1 sj^l 11 "* 

. 
where   ß.  his been defined  in  (51).  From dR/de   * 0 we find  the  equation 

nc f|+ ß.      nccp'+ßL   .   Solving for a.   - nc we get  the second pc'.rt  of  (45), 

The remaining part  of  the  theorem is  a direct  consequence of  theorem 4 for 

u0 "    ''o '     C1 ' a2vl   "  ln(VP    ::    02<p2  *   ln('\ypf 

% " W'l + h "   n4'p2 +  %' anri    X        ^/(-Vjcpp. 

It will be noted  that asymptotically  the ratio between the consumer's and the 

producer^ risk is  constant  for  the Bayesian plans, viz. 

p(P2)/Q(P1) v(/72(-^), (32) 

cf.  Theorem 3. 

i 



From (36) one could hope that n » a + ß(c + T) and consequently that a. a -Pp^- 1/2. 

In [llj it has been demonstrated numerically that this approximation is rather 

good. We shall now derive the limiting values of a,, and a^ for p. —> 0 and 
r " Pj^i  ^xet^ and use the result to discuss the approximation above. 

Proceeding as in section 4 we find 

ln(71/72)       1      8^(^/(8^0) 

2      In r In r    g2ln^^2+l^g2^ 

and 

P0a4 —> -(Sj + 82^a2 + 8l ' 82)/ln ^• 

The last term in lim a. decrenscs from 0.50 to 0.^7 as r increases from I to 2C, 

i.e. the i.a3t term is practically equal to 1/2. 

For small p. and p« we therefore have approximately 

crnPo +'T^T-    r  ^r7^1^2><a2 + 2/3)*2(n )• 

The Traction of the averacc decision loss which  is"due  to"  the consumer's risk 

equals  (p|/5,.   This  fraction  Lends  to  (In(r-l)   In   In  r)/ln  r  Tor  p    —> 0 

(r -  Pp/Pi   fixed),   and   increases  from 0.50  to 0.62  as  r  increases   from  1   to 20. 

7,  RcSiirictcf' Bayeaian sampling plans. 

One of   the  objections   ayainst   the B'ycsian  solution  is   that   it  does  not  always 

lead  to a  sampling plan,   particularly  for  small   lots.   In such cases  a runninp  check 

on  the  assumptions  regarding  the  prior distribution  is   lacking and,   if  quality 

deteriorates,  the delay before  appropriate measures  can be  taken m-Ty be  excessive. 

There rn^y also be cases where a producer,   say,   inspecting his own goods  sets an 

upper  limit  for  the  probability of  passing bod  lots. 

It   is   therefore  useful   to study  restricted  Bayesian solutions  derived by minimizing 

average cos»^ under a  suitably chosen restriction.   Such restrictions may be of an 

economical,   technical,   or statistical nature.   We shall here,  however,  enly consider 

restrictions on the operating characteristic,   i.e.   restrictions which are  independent 

of   the weights  in  the   prior distribution and   the  cost   functions. 

The  first   restricf. ion  of  that  kind was  introduced  by Dodge  and Romig   [ 4   |   in their 

LTPD system of sampling plans.  For  the  present model   it  consists   in  specifying 

P(p7)       ß,  where  ß  customarily  is chosen as  0.10.   Correspondingly,   one may choose 

to  specify 0(p,)  *  a with  a  - 0.03,   say. 
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IC follows from the pronertlep, of the Bayesian sampling plans that, at least 

for large lots, It will be uieconomlcal to specify a fixed risk for the consumer 

or the producer. Instead, tho> risk should be chosen as r. decreasing function of 

lot size, for example as ?(?-) • ß0 for N f N and P(p2) - ß^/N for N > N , or 

similarly as QCpj) - a0 for N ^ N and QCpj) - a0N /N for N > N , which 

asymptoticclly corresponds to (40) and (49). 

Another possibility is to specify P(P0) * 1/2 for p. < p < p2 which will lead 

to decreasing risks both for the producer and the consumer. If p is chosen 

as in (44) both risks will be 0(1/N), otherwise they will tend to zero with 

different rates of convergence. 

Finally one may specify the ratio between the two risks, i.e. Q(p1) ■  pP(P5)> 

which also results in decreasing risks with increasing lot size. The corrcsporc'in. 

Bayesian result is given by (52). 

It will be seen that it is possible (inspired by the asymptotic properties of ehe 

Bayesian sampling plans) to introduce restrictions on the operating character^.0.tjr 

which will change the Bayesian solution for small lots in a desired direction ^nd n 

the same time preserve the properties of the Bayesian solution for large lots. 

It should be noted that restricted Bayesian plans exist also if one of the 

parameters y.   and 7- is zero which means that the doubl« binomial prior 

distribution degenerates to a single binomial. The other quality level is then 

introduced through the restriction with the purpose to avoid too heavy losses if 

the prior distribution changes. In sections 8 - 11 we shall discuss the properties 

of the various types of restricted Bayesian sampling plans. 

8, Minimum overage costs for fixed consumer's or producer's risk. 

We shall limit the mathematical discussion to the c^se with a fixed consumer's 

risk since the two cases are completely analogous. 

Inserting P^) ■ ß into (19) we get 

R(N,n,c) '  n(l - 72ß) + (N - nJ^Q^) + N^ß 

' 

where 

-  (1  72ß)R1 + N72ß (53) 

Rj  - n + (N  n)7Q(P1), 7 - 7^(1  -r2ß).     (54) 

The problem is to minimize R or equivalently R under the restriction 
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P(p2) - B(c,n,P2) - ß. (35) 

Since (55) defines a relcilon between n and c; n n sny, (which is unique 

if n Is determined as the smallest Integer satisfying B(c;n,p2) $ ß) we may 

write R. as a function of c 

R^c) - nc + (N - nc)7(l  Bc) 

where B : B(c>n ,p.).  The value of c minimizing k.   is  determined from the 

inequality /^.(c 1) § 0 < . ?. (c). As 

^R^c) -  (1 - 7 + 7Bc)/nc - 7(N  n^)^ 

we define the auxiliary function 

N  = n Jl + (I// - 1 + B Kn /'B c     c+1  N c  c  c 

so that (n ,c) is the optimum pirn for lot size NifN   SN<N,^B ,>0 x C7 r       r c j^ c'    C 1 

and SS    > C. c 

These Torrnulas are well suited for a systematic tabulation since n and N J c     c 
are easily found for c  0,1,2,...   . 

The above solution hns previously been discussed and tr.bulated in [}2j •    A 

similar approach has bee.i used In [sj, and by Dodge and flomig [';J. It will 

bc noted that the Dodge Romiß LTPD plans are obtained for 7. - 1 and 7.  0 with 

the modification that Dodge and Romig use the hypergeometric distribution 

inscead of the binomial in defining the restriction. 

The asymptotic solution is given in 

Theorem 0. The relation between acceptance number and sample size Is given 

by A 
c/n - p„ + I a.n'l/2 +p(n'5/2) (5^) 

^       i 1 I 

where 

a1 = -u(p2q2)
1/2,        a2 =  - 2 + 6(VP2)(U ' 1)' 

a3-.^(l-6p2q2)(p2q2)'
1/2(u3- 3u) + ^(q2-P2 )2 (P2q2)'

1/2 (2u3.5u) , 

+324(q2-p2)2(12u4 ■ 53u2 + l7)l ' 
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and u denotes the (l-0)-fractilc of the standardized nonnol distribution. 

The relation between sample size and lot size is given by (33) or (35); and 
2 

min R   (l-77ß) In +-^(l.r-
i-7r*-

i-T-2 )| ♦ > ßH + 0(n'3/2)  (57) 
2  I   ao   2V^  4a2n  J    2 

./ > Lilt f*   _l.,!i±oAn, 0/2A JL ,M 

where G0 ■ (pCp^Pj),   ^    bi(p2,p1) for i i  I, 

and X «= (rq2P1)/((P2'Pl)v
/2ffP2<l2^ 

Proof. The asymptotic solution to (55) may be found from the Fishcr-Corrlsh [oj 
2 2 

expansion which leads to (56) since K /a    " <1 - P> ^//tf = 1 - 6pq, and 
2 

-c/(3 r: (<l-p)(l-12pq) for the binomial. The u-polynomials have been tabulated 

as functions of ß in [oj. 

The remaining part of the proof consists of a direct application of thcorons 1 

and 4. 

Analogous results for the case with 7. ■ 1, 7- ■ 0 end Poisson probabilities 

have been given in [9] which also contains an evaluation of the accurncy of thj 

asymptotic solution. In the present paper the expansion his, however, been 

carried two terms further than in [9J and [12J. 

Since the producer's risk tends (exponentially) to ztro and the consumer's rink 

is fixed the average decision loss tends to a constant plus 77ßN. This last 

term will for large N become dominating also as compared to the costs of 

sampling (which are of order In N) and for this reason plans with fixed 

consumer's or producer's risk are uneconomical for large N, 

An Important result Is that asymptotically the sampling plan depends only on 

the product of lot size and copt parameter so that the plan for lot size N and 

cost parameter / equals the plan for lot size N7 and cost parameter 1, Since 

this property holds with good approximation also for small N, tabulation of 

such plans may be limited to 7 - 1 and 7=5, say, for LTPD plans, and to 

7 •- 1 and 7 « 0.2 for AOL plans. 

The present LTPD model generalizes the Dodge-Roralg system of LTPD plans In 

two respects: (1) the single binomial prior distribution has been replace1''. 

by a double binomial, (2) the simple cost function I - n + (N-n)Q(p.), which 

pertains to rectifying inspection 
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with ehe same costs for sampling inspeccion and sorting^ 1 as been replaced 

by R which allows a  much broader interpretation including rectifying as well 

as non-rectifying inapeccion. 

In case w^" 0, i.e. 7«« 0, the quality level p« is introduced through the 

restriction alone, which means that p. has to be determined from wcchnical 

and economical consideracions and not from the prior distribution. 

A detailed discussion of both LTPD and AQL plans and a comparison wich other 

systems has been given in [12]. 

9. Minimum average coses for P(Pn) ■ 1/2. 

The restriction 

P(P0) » B(c,n,p0) - 1/2,  p^ p0< p2, 

defines a relation between n and c, n =» n^ say. Proceeding aa in section 8 wt 

find that the plan (n ,c) is optimum for N . <N < N where 

Nc- ncsi- (l-z^Cp^ - 72P(P2))-nc/(71^(p1) +r2^P(P2)), 

QipJ"  1 - 3(c,ncM-)1) and P(p2) = B(c,nc,p2). 

In principle such IQL plans may be defined for any value of p . If no (technical) 

reasons cxisc for choosing a specific va1ue ol p. it seems reasonable LU determine 

p such that R is minir.: zed, From (26) Lc   follows that one of the risks will 

be infinitely small as -:onpared to the oi.hcr for n —> <» dependiug on \/hich of 

i.he two coefficlencs VipQ,?^  and <f(P0-P2) 
l9 chc larger.  If (p(r0,P2) 5 ^(PQ,?^) 

we find that min R * r -)- l/^p-^p.), 

-<p(Pn,P9)/*(Pn.P1) 
Q(p1) « 0(1/M),  and  P(p2) » 0(N   V    £ ü   ). 

Since n ~ (In N)/cp(pn,p.) it follows chaL min R will be minimized wich respect 

to p0 for VCPQ.PJ) being as large as possible, i.e. for (p(p0, p^ ■= ^(p0,P2), 

which leads to p as defined by (^) . We shall therefore only study IQL plans 

for this value of p . 

Theorem 7. The relation between acceptance number and sample size is given by 

2-?0  (VP0)(l*-32poqo) 

c - np0- -y- -  35ÄÖ^ + 2<n > • (59> 

The relation between sample size and lot size is given by 

In(N-n)   n90+ j In n - ln(^0) + (b^- 2^-)^+ 0(n"
2); (oO) 
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min R - n + —(1 -  r-~) -♦- 0(n"2), (61) <P0 2Von        - 

yvFr       (p.Xy, \        nx  4      Al     2ip '      -        '     N-n 
(62) 

K0^1 v        ..    ,      ..    -.0 

a2(pj .a2<pj 
where a2-  -(2-p0)/3,  b^ ■» bA(p0,pJ),     >.      X^ + ^e ,  and 

-a cp! -a ?' 
b^  <li.lXle + ^^^ )A- 

Proof.     The  flrsL  parL of  Lhe  theorem follows  fron  (56)   for  ß -  1/2,   i.e.     u ■ 0. 
2 

Let  c/n »  p + a-/n +  H /n    whtre a.  and  a    art defined by  (59).  Then from theorem 1 

we have 

-1/2    "nVVn -2 R      n + (N-n)n    "\e (I + g(n ')) 

with the definitions of K  and b, as given above. The remaining part of the 

proof follows from Lheorcu 4. 

Since a. is small we have practically c K np -2/3 and consequently P(p2)s Q(p1) 

according to theorem 2. 

The IQL plans are the only plans with a fixed risk which lead to a relationship 

between c end n of the same type as the one for the Baycsian plans. The 

coefficients a_ and a are, however, different. As a result wc find in the 

IQL system P(p7)/Q(p1) a 1 whereas this rado in the Bayesian system equals 

Because of the relation Q(p1) as P(p ) wc have 

R a n + (N-n)(71+ 72)Q(Pl) (63) 

so that we may use ehe IQL plans defined by (p«, p. ,71"*- 79) as an approximation 

to the IQL plans defined by (p.,p~,7.,7~) which makrj a tabulation much easier, 

sec [12]. Plans for y.+ yA  1 may be found with good approximation from a table 

for y.+  7 ■ 1 by using N ■ N(7 + y )  as arßumenc. 

The IQL plans conaidcrcd here are generalizations of the plans discussed by 

VJcibull [17] and tabulated by Markback [1J] in the same manner as the LTPD 

[ilans are generalizations of the Dodge-Romig plans. 

10. Minimum average costs for decreasing consumer's or producers risk. 

The restriction imposed io of the form P(p-) ■ ß(N), say, where ß(N) is a 

given decreasing function of N tending to zero. 
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We shall only treat the case P(p ) - ß for N $ N and P(p ) " PQNQ/N ■ p/N 

for N > N . For a specified decreasing producer's risk wc get analogous 

results. 

For N S N- the theory has already been given in section 8. For N > M ihc 

procedure for obtaining the exact solution is analogous to the one derived 

In section 8 with the (numerical) complication that n,a3 defined ty the 

restriction, becones a function of both c and N. Therefore th». auxiliary 

function N has 'o be dctcruincd by IteraLlon for each c. 
c 

The asymptotic solution ia given In 

Theorem 8.  The rcla.ion between acceptance number and sampK size is 
————— 2 
c ■ np + a.-f a,/n + 0(n ) where 

(6A) a.^ —• In    and a - — (ß,,- ß.^ rr-). 
2  6'    ^(-Vp        A 8'  2  1  2"0 

p0, Vn,   ß., and P being defined in (AA), (50), and (51), res pec Lively. 

The relation between sample size and lot size is Riven by 

1 ßy2 I     -2 In N - cp n + -  In n -:- a^i + In ^ + (a.«Pi + ß,)-1 + 0(n *)        (65) 

and 

t'^ 1       -2 mln R - n + ßr. + --rf- (I - —--) + 0(n *) . (06) 
2  'P0b       2V0n 

Proof. Writing c/n - pn+ c it follows as In section 6 that p. < p < p . 

From 
X2 -1/2 -^(P0,P2)-ne^  ^ 

B(c,n,p2) - ~ n   e ' N ' 

disregarding terms of "higher order1*, we find 

<P(P0,P2)n + jln n + ne^ -:- In(p72/X2) - In N. (67) 

For given values of p and c this gives a relation between n and N. K remains 

to determine p and t  so  that R Is mlnlmiEcd. 

Writing 

R - n + (N-n)72P(p2)((71Q(P1))/(72P(P2)) + D 

we fInd 
/\       -nf) -nr. 5' 

N  2 XX2 
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From (37) wc have n ~ (In N)/9(p_,p<>) «o that p enters Into R through n and 
0    1 c 

exp( ri6 ). To determine the optimum value of p consider first 6  - 0 which 

gives p as determined by ('»A). As shown below we then determine t so that 

Ä - n + 0(1). For 8 < 0 we get e  u • 0(1^), u > 0, which gives a larger R 

thru for 6 • 0. For Pi > 0 we find R -^ n +0(1) but since ip(p0,P2) < cp« the 

corresponding R will be larger than for 5 - 0. Consequently we have 8   0. 

To determine C we solve the equation dR/dr • 0 taking Into account that n 

according to (J7) depends on c. Usinr. dn/ö: ^ n'?'/,; and solving for a.  nr. 

wc get the result given in ((A). 

To get one more term we introduce c/n * Pn + (a0 + O/n and repeat the procedure 

to determine the new c. From 

(P0n + jln n + a^  + ln(ßy2/\2)  + (ß2 + n-eppn 
1 -  In N 

and 

A        a98
,-(U1-ß9+nc80/n   N 

v/e get dn/ör = (-(pn/«Pri)(l - l/2vn
n) a^  solvirj the equation dR/dc ■   0  with 

respect to nc we fine' a^ as given in (C>4). 

Tho remaining part of the theorem follows by inserting the values of a an- a, 

in R. 

This system of plans has thus the same asymptotic properties as the Bayesian plans. 

The essential difference between the two systems arises from the different 

constant terms in the asymptotic relations between c and n and between n and N 

becauac uhece constanta depend on the (arbitrary) parameter ß. 

Wc may minimize mln R with respect to ß. Taking into account that n, a  ,  a , and 

ß» are functions of ß we find the optimum value is ß - v',/(.ff^?^')  as might be 

expected from the Bayesian solution and furthermore mln R « n «f 1/^ -f 0(n  ). 

11.  Minimum average cosLs foi a fixed_ ratio of the consumer's to the producer's rir-k. 

The restriction is given as P(p9) " pQ(p1) which naturally may be modified so 

that for N * N  it is further required that P(p7) = ß, say, and that P(p?)  S ß 

for N * N . 

The restriction defines n as a function of c and the exact solution may therefore 

be derived by the same method as used in section C. Since P(p1) > P(p~) it is 

necessary for a solution to t-xist that P(p9) < p/(l+0). 
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The asymptotic solution Is given by 

Theorem 9^ The relation between acceptance number and sample sice is 
.2 

c • np0 + a. •♦■ a /n + 0(n ) where 

I    Vf a2  ' bl* I^~ ' (6C) 

p and a^ being defined in (4A) nnd (30), respectively. 

The relation between sample size and lot size is given by 

In(N-n) - <p0n+ -In n+ a^J  ln(X90)+ (^«pj +ß1 - JJ-)^ + 0(n'2)     (^9) 

and 

min R  -  n + ~ (1 - ~~ ) + 0(n"2) (7D) 
^0    2V 

where    \        «  ^i ^i + Vy^lf*  and ß is defined in (51). 

Proof.  The proof is similar to the one in section 6 making use of theorems 3 and 

A. 

Minimizing min R with respect to p gives 0 -   (7.^)/(-r.cp') which leads back to 

the Bayeslan solution. 

For p » I we find for small p and p. that a a -2/3 which means that wc get 

approximately the IQL plans discussed in section 9. 

12.  Sampling plans defined by two risks. 

Suppose now that the weights of the prior distribution and the costs are unknown. 

Uc then ask the question: Is it possible from knowledge of (p,,?») alone to 

define systems of samplinß plans having similar properties as the Bayeslan anc' 

Che restricted Bayesian plans? 

By means of the asymptotic properties derived in the previous sections we may 

construct three systems with the required properties, each of thenbeing defined 

by specifying two risks: 

At  Decreasing producer's and consumer's risk, i.e. Q(p1) *  ct/N and P(p3) " ß/N, 

which corresponds to the Bayeslan plans in section 6 and the restricted 

Bayeslan plans in section 10 and 11. 

B.  LTPD plans with decreasing producer's risk (or AQL plans with decreasing 

consumer's risk), i.e. Q(p.) E a/N and P(p2) - ß (or Q(p1) ■ a and 

P(P5) " ß/N), which corresponds to the plans rUscussod in section G. 

—^ _.. . 
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C^ IQL plans with decreasing producer's (or consumer's) risk. I.e. 

P(P0) " 1/2 and 0(p ) ■ a/N (or P(p2) - ß/N), which corresponds to the 

IQL plans discussed in section 9. 

It may be necessary to modify conditions of the form 0(p.) ■ a/N, say, to 

Q(p1) - a0 for N $ N0 and 0^) - a^/N - -./N for N > NQ. 

It will be noted that the requirement min R has been replaced by conditions as 

CHp^ - a/N and/or P(p7) - ß/N. 

Wc shall give a short discussion of these three systems. Each of the first two 

contains two arbitrary porainetcrs, a and ß, wheress the last contains only one, 

A,  From the two conditions we find that B(c,n,p?)/(1 - B(c,n,p.)) ■ ß/a, which 

defines a relationship between n and c, n « n say. Dcfininß the auxiliary function 

N  - ß/B(c,n ,p2) it follows that (c,n ) satisfies the conditions for N , < N < Nc 

(If we interpret the equalities as *). It Is therefore rather easy to tabulate 

theffe plans when n has been found. Since ?(?,) > P(p:)) It Is necessary for 

a solution to exist that N > a + ß. 

2     -3 
Asymptotically we find that c/n a PA ^ a./n + a /n + 0(n ) where p , a , and 

a, are determined by means of theorem 3, I.e. 

1    ßxl72 

The relation between lot size and sample size Is given by (63). 

The corresponding costs arc 

R  -  n + (7^ + 72ß) + 0(n"
2) (7?) 

which Is minimized with respect to a and ß for a - (-(p5)/,yi(P06' and 

ß - (pj/y-^JJ', compare theorem 5. 

For any a  and ß we may thus construct a system of sampling plans with the same 

asymptotic properties as the Bayeslan plans. Tabulotion of the "optimunf*values 

of a and ß for typical values of (p, ^j,}',^) may give some guidance for the 

choice of a and ß. 

B^ The condition ?<Pj)  ~  ß defines n *• n which together with the other condition 

gives 

N ■ a/(l - B(c,n ,p )).It Is necessary that N> a/(l - ß). 

Asymptotically c/n Is given by (5S), and by means of theorem 1 we get 
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In N ■> cpCp^p^n •»• bjVn -:- 2lnn'f^+ln(a(p2-p1) s/^Tp^/p^) + ... (73) 

where bl - h^p^). 

The corresponding costs become 

R    -     (1   -   72ß)n + 7^    +    72W    +    0(n"2) (76) 

which is minimized with respect to a for a = (I - 7:)ß)/71'p(p?,Pj), compare 

theorem 5. 

The system may be characterized as an LTPD system with the conGumcr^s risk inversely 

proportional to lot size. It is much easier to tabulntc than the corresponding 

restricted Bayesian system. 

C.  The exact solution is analogous to the one under B. 

2     -3 Asymptotically we have c/n ^ Pn + a^/n + a /n + 0(n  ), where the coetTicicnLr; 

a^ and a are given by (59). From theorem 1 we find 

In N = (^n + |ln n + a^J + In^/Xj) + b^ (Po^PP"'1 + 2(n' >•        ('^ 

The costs become 
7iaX2 ^ -1      -2 R - n + rjCi + ^-^ c    (I +(a46' + ß2 - ß^n ') -i- 0(n ') (7 6) 

•• • 
2 1 which is minimized with respect to a for a = X c    /^  \y.,  compare thecren 7. 

i        0  1 

The system is an IQL system with the consumer's risk inversely proportional to lot 

size. According to theorem 2 the producer's and the consumer s risk are nearly 

equal. 

The exact solution is very easy to tabulate because n may be found from the 

asymptotic solution with sufficient accuracy for c 2 1. 

D.  Fixed risks. For the sake of completeness we mention the system with fixe1 

risks, i.e. 

N and gives 

risks, i.e. Q(p1) "  0 and P(p9) " ß, which leads to a sampling plan independent of 

R -  (1 - 7la - 72ß)n + Oyj + 72P)N. (77) 

For systems A and C the costs consist of sampling inspection costs, n = 0(ln N), 

plus an asymptotically constant average decision loss. 

For system B the sampling inspection costs arc 0(ln N) and the dn:ision lop" 

consists o^ a constant part (from the decreasing rick) and a part proportional 

to N (from the constant risk). 
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For system D sampling  inspection cost« arc constant and the decision loss  is 

proportional  to N. 

Ej,    Percentage  inspection.  The plans are defined by n =» ^H,  n being a  (arbitrary) 

constant,  and c  «»  p n  (or c      pnn + a    -f ,..). 

From theorem 1  we get 

R    =     uN + 0(Ne"N) (78) 

so that we have the interesting result  that for the given model plans with 

fixed .risks and £lans with percentage inspection asymptotically have the same 

costa for (i « y.a + 7?ß. 

In the first case the costs arc essentially decision losses (because the cample 

is too small) and in the second case the costs are essentially inspection costs 

(because the sample is too large). 

For y    *= l}  y    m 0.5,  a «  0.05;and ß = 0.10 we get n  0.10 which is of the order 

of magnitude as previously found fn practice. 

13.  Efficiency and robustness. 

In a previous paper jioj it has been proposed to define the efficiency of a 

sampling plan as 

e(N,n,c) = R0(N)/R(N,n,c) (79) 

where Rn(N) denotes the costs of the optimum plan and R(N,u,c) denotes the 

costs of the plan in question. 

For a lot containing X defectives acceptance without inspection is cheaper than 

rejection w-thout inspection if X S [Np J. Classifying all lots in this way the 

average costs becoine 

[NPrl » 
K (N)  =   I     (MA, +XA0)f..(X) ♦    I (NR. + XR9)fM(X). 

X-0   1    2  W     X-[Npr]+l   
1    2  N 

5 

By means of theorem 1 

K (N)/N - k + 0(N'3/2 e'N) 
m m  ■— 

and K (N)/N —> k  from below, 
m m 

It would be more correct to define efficiency as the ratio of costs in excess of 

K (N) instead of Nk . The difference in the two definitions is. however, of mm ' ' 
importance only for very small N. The definition (79) tends to underestimate 

the efficiency. 

w 
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Theorera  10.     Lee  a system of sampling plans be defined by  .he  cwo rc.a.ouo 

c ■ np0+ a2+ o(l) and 

In(N-n) - <p n + j In n + K + o(I) (3->N. 

/   ^r //   p2qiN po qo 
where p - 'In — / In *•  and mn  • p^ln — + q^ln — , 1 ^ 1 or 2. ri.en 

0 V  «»2./^  p^2y 0   0  r'i   0  qi 

e(N,n,c) - 1 - -i- (, x + K  - K  -   1) +o(n 
l)       (Cl) 

(p n  C    0 

K'a2^1    K-a^yA 
where K. denotes :hc constant terra of (A7) and kn X,e + \ c 

Proof. From theorem r; we have that Rn(N)  n + 1/^ where n is define'' by 

(80) for K 
a Kn- By means of theorem 1 and (80) we find that R(N/n,c)  p •;- ä 

so that 

no'n   1 v '   \ -1 
e=  1 + -i^—+ ^!-   1+-  +o(n ). 

n   ^.n ; >   n 
^0 / 

Comparison of (80) and the corresponding equation defining, n leads co 

n /n ■ 1 + (K-K0)/^nn + o(n ) which completes the proof. 

The theorem shows cha. the rescrlcted Bayesian plann, apart froia ^he one luvn"., 

a fixed risk, and LIIC corresponding plans based on two risks all have asyupcotii 

efficiency 1. The reasons for this iripor..an  result arc chat these plans only 

differ with respecc LO the constant terns a- and *. 

I should also be no-cd :hat p and m defend on (p.^p-) only, whereas a9 ar ' r 

depend on the other parameters also. This means trhat wronp, values OL   (I;. ,\;9) 

and the cost parameters have a secondary influence on the efficiency rhfch 

tends to 1 if only (p,,p9) are correct. 

Since plans having the sonsumer's and/or the producer's  risk fi'ced, lead 

co costs of order M, :hc efficiency of such plans tends to zero as (In '.■;/ N. 

Suppose now that plans have been construc::cd from wrong values o^ :he parameters, 

(P1.p2' ^i'^) 
say>   whcrc pj >f p1 and p2 f p2. We then get 

Theorem 11. Let a system of sampling plans be defined by the two rela>:irns 

c • np + a. + o(l) and 

In(N-n) • ((*n + j In n + KV o(l). ''32) 

Then • « v 

c^N.n^c) - -^ 1 - 4" «r.-^*-i + T In -^   +o(n"1) ^:3) 
^0     ^n  0       2   %" 

*  « -r 
If and only if p < p < p < p.. Otherwise e —> 0 as N In fl for 0 < c '■ 1, 
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Proof. If p < p < p If followL fron theorem 1 that 

-1/2  * -n(p(p0,P )-a*V[ 
R - n + (N-n)n    EX c    U L  ^  X 

n + rx.e 

where  6^ ^(p0, Pt)-crCpjj^j^)  sinct  v0= ^(PQ.I^)  = (p(Pu,P2)   .   If  P0 ^ (p^Pj) 

.hen R contains a   cem proportional   to (H-n)  beside  terns as above. 

/ Pl^ Pl ' P2> P2 §,> 0 for.' and    5. > 0 for N    ^      f 
VP2< Pi lpl>p: 

we get  5^ 0 and  &2> 0 for (1)   p^ pj< p*< p2,   (2)   p^ p2< ?*<?* 

(3)   Pj< ?*< P^ P2;     6^ 0 and  52< 0 for  (A)   P^P^ P2< P2,     B^ 0 and  B2> 0 

for (5)   p^ p^ p2< p2;    8^ 0 and  62< 0 for (6)   p^ p^ p2< p2. 

In cases   (2)   and   (3)  we have  p    ^  (PIWT)  wherefore R = 0(N).   In cases   {^)-{t>) 

we may have  p    £  (PIJK),   but  since ac   leas.:  one  of   :he   ^'s  is  ne^aLive^   and 

h < (j gives 

cxp^nft)   -  exp(-— In N +  . . .)   = g(Nr),       0 < c  <  1, 

we get R ■ 0(N ),  0 < f < 1, Including ^he cases with p f^ (p^P,)- It follows 

.ha: e -> 0 as (In N)/^ . 

In case (1) wc have R -= n + 0(e ) so thai, c - (n + l/(üi/n. Fron (G2) and t he 

corresponding expression for n we find 

0  H0 

•o n   ^ 
Kn- r In —  —7 + 0(n ) 

which  leads   to  (83) 

.-1 It  is also clear    hat  the cases with at  leasi. one risk  fixed give c a 0(11    In N) 

'ihc general  conclusion is  that   the Baycsian plans  (and also the res:ric^ed 
«       ♦ 

Bayesian  plans with decreasing risks)  arc  rather robust  If only pX p < p < p 
112       2 

A discussion with nuncri^al examples ha« been given in   [11], 

If the  prior diocr'-buiion of  p is continuous wc get asynptoticaliy that n 

is  proportional   to VN.  This case  has  been discussed  in   [10] where also a 

comparison with IQL plane  has  been given. 
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14. An example. 

As an example consiüer a case wi^h p." 0 Oi,   w." 0.85, and p » 0.05, W2~ 0.15. 

Let the costs of sampling tnspectlon be 0.40 (economic unlcs) per icen In the 

sample, i.e. S.« O.'vO and S2" 0, the cose of rejection 0.30 per l:cri In 

the remainder, i.e. R,^ 0.30 and R = 0, and ehe costs of ac:eptancc per 

defective item 10.00, i.e. A.« 0 and \*  '-0.00,   It follows that p^- 0.03, 

7 » 0.6296, and y - 0.1111. 

In the table we have compared plans from C systems defined as follows: 

(1). Bayes. Plans minimizing R(N,n,c). 

(2). IQL. Min R for P(p0) = 1/2. We get p0- 0.0250. The plans have been 

found by minimizing R * n + (N-n) ^.-«-p?^ where 

-2/3 
Vi    p2ql 

r, = -A-i   -" = O.9032,  and 7,+P70
= 0.7A. 

V2\PlV 1     2 

(3).   LTPD. Mln R for P(p )  = 0.10.  > = O.OA. 

(A).   AQL.  Mln R for QCp^  = 0.05.  7 m 0.11. 

(5).    Fixed risk. Q(p1)   - 0.05 and P(p2)   - 0.10. 

(6).    Percentage  Inspection,  p = 0.05/^ 0.10>2= 0.04259. 

(7).    Dodge.  The AQL sysiicm with 57. consumer's risk proposed by Dodge  In  [3] 

with AQL =  p,. 

(8).    Mil-Scd. Military S:andard  105D  [16] wUh AQL = p . 

The Dodge-Romlg sysLen has noc been Included In the comparisons because it 

gives    nearly  the  same  result as  the LTPD system with y • 0.64. 

For each of 7 lot sizes Lhe Bayesian plan and the corresponding costs have 

been found and for Lhc other systems the efficiency has been computed from 

(79). 

Since 7    Is considerably larger chan y    1. will be expected  that  plane with 

small values of Q(p,)  as compared  to P(^9)   are  to be preferred.   Systems with 

a  fixed  producer's  risk, such as  (4),   (5),   and  (7),  may therefore be expected 

to give   low efficiencies for  large  lots,  as   seen In the table. 

It   is  interest in,   co compare  the two risks  for  the various systems. 

The  table reveals what   price must be  paid   co obtain a specified degree of 

protection.   It may In some circumstances  seen reisonable  to pay such a price 

for small   lots,   buc cercainly not  for  large   lott  where  the protecdon obtained 

in  terras cf the  two risks is very good both  for the  Bayesian and  the  IQL 

system. 
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15. MisccIIancoui remarko, 

A. Generalizationf jjf the model. A» Indicated In Bcctlon 2 the model nuiy be 

ßcnerrlizcd by Introducing a polynomial coat function n3 in (12) ant!/ or 

a more general prior discribotion. The asymptotic results hold for any prior 

distribution having probability zero for values of p in the open interval 

(Pi>P?)> where p. < p < p?, and assigning finite probabilities, w and w2, aay, 

w. -f w. S I, to the end-points of this interval, i.e. the prior distribution 

may be arbitrary outside the closed interval (p,^)^ see [7 ]f   [8 j, and [ill. 

Another possible generalization will be to make the prior distribution a function 

of N, see (13), for example to use a double binomial with p2/pl depending on ::. 

B. The AOQL system. If p. < P, < P-^ P. denoting the ACQL, it may be shown as 

in [13] that R => i. + y./q). + ^(N1'^2 'A), where (p - (p(pL,pi) for i - i,7 

For p > p we have tp £ y    which means that the AOQL system glvcOa satisfactory 

result within the given framework only If p s p  /. generalization of the 

AOQL system has been discussed in [12]. 

C. The relation to hypothesis testing. The producer's and consumer's ricks 

correspond to the probau»IUicQ of errors of the first and second kind, respectively, 

for testing the hypothesis p  p. against the alternative p = p». Lehmann [K: J 

has suggested .o use the relationship  ß ■ ' a as a rule of thumb for obtaining 

a reasonable balance between the two error probabil itica (. = Q(p,) and ß - P(;30)) 

instead of just using a standard significance level for .. It is Interesting tc 

nocicc that the Bayesian solution asymptotically has this property , sec (52), 

so that Lclimann's rule is supported not only from the minlmax point of view, 

as mentioned by himself, but ~lso from the Bayesian. 
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